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MIXINGOF A COMPRESSIBLE FLUID

By Dean R. Chapman

SUMMARY

A theoretical investigation of the velocity profiles for laminar
mixing of a compressibl~f luia stream with a region of fluid at rest
has been made assuming that the Prandtl nmber is unity. A method
which involves only quadrature is presented for calculating the
velocity profile in the mixing layer for an arbitrary value of the
free-stream Mach number;

Detailed velocity profiles have been calculated for fre=tresm
Mach numbers of O, 1, 2, 3, and 5. I?oreach Mach number, velocity
profiles are presented for both a linear and a 0.7@ower variation
of viscosity with absolute temperature. The calculations for a linear
variation are much simpl& than those for a O.Y&power variation. It
is shown that by selecting the constant of proportionality in the
linear approximateion such that it gives the correct value for the
viscosity in the high-temperature part of the mixing layer, the
resulting velocity profiles are in excellent agreemnt with those
calculated by a O.‘&power variation.

llTIRODTJCTION

The velocity profile for turbulent mixing at constant pressure
of an incompressible streem with a dead~ir region has been calcu-
lated by several investigators, principally To13mien (reference 1).
These calcuktions agree well with the available experimental data,
although the conventional assumptions regardhg the mixing length of
a turb~ent flow have since been shown by experiments.to be incorrect
(reference 2). The many difficulties encountered h making precise
turbulent+ixing calculations are, of course, a consequence of the
extremely complicated mechanism governing all turbulent flows. In
contradisttiction to the case of turbulent mixing, the mechanism
tivolved in laminsr mixing is lmown, and the relation between
stresses and velocity gradients for lamher flow can be written

.
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explicitly h a relatively simple form. The velocity profiles for
laminar mixing, however, apparently have not as yet been calculated
even for the case ‘of incompressible flow. It is the purpose of the
present paper to csllculatethe velocity profiles for laminar mixing
starting with zero boundary-layer thickness of an air stream of
arbitrsry temperature and a dead~ir region also of arbitrary temper-
ature. In cases where a laminar boundary layer of appreciable
thickness exists at the point where mixing begins, the results given
herein exe not directly applicable in the initial part of the mixing
region. I?orsuch cases, it is necessary to make some supplementary
approximateion in order to apply the remilts.

Since the practical applications of ~ti phenomenon
usually involve the flow of a compressible fluid, the present analy-
sis includes the effects of compressibility. Examples of typical
flows wherein laminar mixing occurs can be found in the flow of
small-scale jet pumps, ti the flow behind the intersection of shock
waves of unequal strength, and in the flow immediatelybehind the
base of a body which has a laminar boundary layer.=

SS!MBOBm NOTATIONS

c constant of proportionality between viscosity and temperature

%
specific heat at constant pressure

k coefficient of.heat conduction

L ctiacteristic length .

M Mach ntier

“P static pressure

Pr ()“2Prandtl number k
.

%!he present analysis was undertaken as part of an investigation of
this latter problem, and originally appeared as AppendixB of a
thesis ‘Base Wssure at Supersonic Velocitiesj” submitted to the
California Institute of !l?echnolo~,June 1948. The results of
some supplementary computations not given in the thesis have been
added for sake of completeness in the present report.
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Sutherland Cmstant,l

absoltie temperature

free+tream velocity

velocity components b

Cartesian coordinates

approxhately 216°F for air

x,y directions, respectively

thicknessof mixinglayer,takenbetweenpoints where the
velocity is 0,01 and 0.99 of the tiee+tream velocity

e~onent of viscosity variation with temperature

mass density

coefficient of viscosity

kinematic coefficient of viscosity

stream function

dimensionless independent variable

Wbscripts end Superscripts

dimensionless variables as defined in equation (14)

free-stream conditions

stagnation conditions of the free stresm

conditions in the deadair region

BASICEQUATIONSAND ASSUMPTIONS

Basic 3Zquations

A schematic illustration of the flow under consideration is
shown h figure 1. In order to make the lam~ ing process
amenable to calculation, the usual assumptions are made that the
layer affected by viscosity is thin and has zero pressure gradient.
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Under these conditions the formal procedure for esthating the order
of magnitu@e of the various terms in the complete NavieMtokes
equations for viscous compressible flow can be csrried through in
precise3y the same manner as is done in the classical (Prandtl)
treatment of laminer boundary+ayer flows. ~ SO doing, the i@UTlliC
equation for the x dtiection reduces to the familisr boundary-
lsyer momentum equation.

(1)

while the dynamic equation for the y direction reduces to zero on
both SideS. In passing from the Naviez+tokes equation to (1) it
is to be noted that the usual boundary-layer assumption 8/x C <1
is violated in the hmediate vicinity of point O (fig. 1) just as in
the case of boundary-layer flow over a plate.

By employing the same cozMiderations on order of magnitudes as
were used for the complete Navie~okes equations, the complete
differential
compressible

pu

which iS, of
layer flow.

equation representing the balance of energy in viscous

course, the usual energy equation for
In addition to equations (1) and (2),

expressing conservation of mass is needed:

a( Pu) a(pv)
ax ‘~=o

For a given gas the variatim of K and ~ with

(2)

laminar boundary-
the equation

(3)

temperature is

o

lmown; hsnce, the foregoing system of three-partial differential
equations is completed by the addition of the equation of state for
a region of constant pressure

(4)

(1

.
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In order to solve
assumptions me made:

Assumptions

the above system of equations, the folhwing

l.%=

2.Pr=

3.:=
m.

Constsllt

cpM/k = 1

c)T’”CT
, where C is a constant depending on Td and Tm.

The second of these assumptions if often made in calculating boundary-
layer flows when aoly the velocity profile is desired and not the
thermal characteristics. The difference between the boundary-layer
velocity distributions for Pr = 1 and Pr = 0.73 is small,as is
clearly shown by the numerical results of Ihmmns and Brainerd
(reference 3). Sticethe mixing-layerand boundary-layer flows
differ only in the boundary conditions and not in the differential
equations, the effect of assum@ion 2 may be expected to be similar
in the two types of viscous flow. At moderate supersonic Mach
numbers, the use of Pr = 1 for air does not introduce more than
1- or 2=percent error in the boundary-layer velocity profKle; and
hence, for all practical purposes, the mix~-layer velocity distri–
bution calculations for Tr = 1 should be sufficiently accurate for
air.

Assumption 3 needs some e@anation stice the introduction of a
constant C cliffering IWom unity in the approximate relation between
viscosity and temperature apparently has not been used in previous
work. Usually C is taken as unity, and in such cases the approxi-
mation p/pm = (T/Tm)m gives reliable results for a fixed m,
provided the fre~tream temperature is restricted to a certain
range. By introducing the factor C, the “approximatingequation can
be made to give the same value as an exact equation at any desired
temperature in the mixing layer regardless of Tm or m. Assuming
that Sutherland9s equation,

P

()

T !3/2’Tm+s
—=

~ T+S
(5)Pm

is exact for the variation of viscosity with temperature, then the
approxhate equation can be made exact at any given temperature T

.—.._— ——.....— — .—— — .—.— . ——_—. ————
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by means of the relation

c (ET= (g=” ~
(6)

In prticulsr, if the approximating equation is linear in temperature
(m = 1, thereby greatly simpl- the boundary-layer equati-ms) and
the viscosity is
equation gives

matched at the temperature Td then the above

[

TdT=+S
c = —— .

TmTd+S (7)

for the constant C.

SOIUTION TO BASIC EQUATIONS

As was ftist pointed out by Prandtl in reference 4, and later
used to advantage by Busemann and Crocco (references 5 and 6,
respectiwly), the consequence of the assumption IY = 1 when
applied to boundary-lsyer flow is that the temperature becomes a
function only of the velocity. Hence

, %T
= f(u) (8)

By substittihg this relation into equation (2) and using equation (1)
in conjunction with the assurqtion Pr = 1, it follows that the
energy equation is automatically satisfied ~
satisfies the ordinary differential equation

du2

Integrating this equation, using the boundary

T= Tmforu=Um

T = Td,for u = O

the function f(u)

(9)

conditions,

(lo)

gives

f(u) = CPT = cpTd - ; + ~
[

um2
cp(Tm — Td) + —

2 1
(U)

w
as the relationship between velocity and temperature. Since the

.

.
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temperature detemdnes the density, equation (Il.)also provides a
means for calculating the density as a function of the velocity.

Following the method first given for incompressible flow by
von Mises (reference 7) and later used for compressible flow by
von K&r3&-
new set of
function.
continuity
compnents

and Tsien (reference 8), a transformation is made to a
independent variables (x,$), where $
By using w as one of the tidependent
equation (3) is identicddy satisfied,
are given by

is the stream
variables, the
and the velocity

(w)

Since the requirements of conservation of ener~ are fulfilledby
equation (U.), emd conservation of mass by equation (X2), the only
equation now remaining to be satisfied is the momentum equation (1).
If a transformation were made to a completely new set of independent
variables (s,v), the transformation formula would be

Setting s SX,

so that the transformation formulae exe2

a Pua——
G=pmaq

()
a

()
Pva+a

GY ‘–pmav Z*

2The variables held constant h a differentiation process sre
explicitly indicated ti those cases where ambiguity could result
if the mibscript notation were not used.
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It fO~OWS that

,.(2),+~v($)x=a),

@j.x“:(s!.
Hence the mmmntum equation (1) in the (xjv)

/&_a

=h av

This can be put in dimensimless

NACA TN No ● 1800 .

,

system becmhes

(13)

form by introducing the variables

P* ==

psrsmeter C appear~ h the definition,of,~
variables sre the same as those used by Karman and

(14)

Tsien (&ference 8). Remetieringthat TO*,the free+tream total-
temperature ratio is given by

‘J? 7-1
To*=& l+~Mm2

m

then the relation (equation (U) ) between temperature and velocity
can be written as -

!& . Td+ _

The momentum equation (33)

&i=
w+

= 1,

(16)

—. .———— —.— --—~ ,. .-, — ——— -
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This is the basic equation which must be solved. The boundary
conditions of the problem are such that no boundary layer exists at
the point where mixing first begins. Under these conditio~ the
velocity profiles will be similer at alL points downstream of the
origin, and hence the velocity ti will be a function only of SOM
dimensionless variable ~. This dimensionless variable must involve
both V* and &, and must be zero at the origin of coordinates
since the mixing-layer thickness is also zero at the origh.
Therefore, let

where a and
condition that

b are pure nuuiberswhich must be determhedby the
both sides of equation (16) for @ we functions

only of the single variable ~~ Setti& “

g(!!)= u-l (17)

then the right side of equation (16)can be written as

from which it is obvious that in order for the right side of
equation (16) to be a function only of ~, it is necessary that
a= 1. With M = u*(L) and a = 1, the partial differential
equation (16) reduces to the ordinery differential equation

Consequently, in order for the entire e ution to
\Of ~, it is also necessery that b = – ~, hence

be a function only

(18)

and the ordinary differential equation for the velocity distribution
now reduces to

Equation (19) is the same differential equation that was
obtained for boundary-layer flow-in reference 8. It is a nonlinear,

. . .. . . . - —- —-- -- -- —-—-—-—-—--——— -- ———-—— —.. . .–—- .—_________ ..__–. . .. . .
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clifferential equation since g depends upon the velocity u*. This
eqwtion, however, can easily be converted into an in.tegal equation
which can be solved by thb method of successive approxhations. The
conversion is made by temporarily assumhg that g
function of ~ (instead of H) and formaay applying
methods for solving first-order linear differential
result is

f

EF

ti = c1 d~ + (32
Oz

where
_f: & ~g

F=e

The boundary conditions are

U* =lat ~==

U* =Oat~=–m

is a known
the standsrd
equations. The

(20)

(21)

(22a)

(22b)

Letting %* be the value of & at ~ = O, equation(20)can be
writtenas

The constant Cl must satisfy two requirements

1**
=Cl= %*

m

f ‘%~ J’.‘Fog
#

(23)

(24) I

Equation (23) is an integral equation for u*> s~e both F
and g- sre Il&ctions of &.- By smly
solution for @ as a function of ~, a
the true solution can be calculated from

estimatin.ga reasonable
first approximation lu* to

O%*

The zero+rder
directly from

approximateions # sad & cau be calculated
Ou? by using equations (15),(17), and (21). If this

—

.

.

.

.
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process is repeated until a given approximation is the same as the
preceding one (to the degree of accuracy desired), and equation (24)
is simultaneously satisfied, then the solution to the problem is
obtained. The iteration process turns out to be rapidly convergent,
requir~ two or three iterations to obtain the function ti(~)
accurate to withti 1 percent, and about four or five iterations to
obtain &(<) accurate to within a-few tenths of 1 percent.

o

In order to change the function W(L) back to the physical
coordinates (x)y) a simple
of the stream function,

quadrature is necessary. By definition

or

Hence, with x held constant, integration gives

y]~<’ g., (25)

rfrom which u/Urn as a function of y ~ canbe determined. It

is to be noted that no graphical or numerical differentiations are
needed at any potnt in the above iteration process, only quadrature
are required.

As is evident from equation (16), the assumption @ = C!&,
that is, u)= 1, makes the momentum equation (16) independent of
temperature, and hence density. Consequently, with o = 1, the
solution to equation (16) in (x,*) coordinates is independent of
Mach nunber. For zero Mach nuniber, N = 1, C = 1, and

Usin& this relation the solution in physical (xjy) coordinates is

\ obtained from the solution for zero Mach nurciberby stistituting

—— ,—.. —. -—— ———--—— — ——
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equation (15) into equation (25) to give .

Y&=Td*(Y--)Md-GM..JLu*d,+(CCO*4C.*),,’26,

.

where the integrsl h the second term on the right side is carried
out for *( (.) corresponding to Ma = O.

Numerical calculations of the velocity distribution have been .
made for the following cases:

1. V* = ~0.78; M= = 0,1,2,3,-5

2. @=&&; Mm= o, 1, 2, 3, and 5

The various solutions for case 2 are obtained directly
(equation (26)) from the solution for & = O without carrying out
the hborious iteration process that is necessary to obtain solutions
for case 1. All nwrical results in physical coordinates

(YG as @w@ent V=iable) have been c~c~ted for the
case Td = To. If the dead%ir temperature is radically different
from % free-stream stagnation temperature the proper velocity
distribution curves can be obtained by carrying out the integration
indicated in equation (25), since the function u*(C) ti (xYw)
coordinates is independent of the thermal boundary conditions of the
problem.

.

.

.

Curves of M(g) are shown in figure 2 for various Mach
numbers. The corresponding curves in the physical plane are shown
h figure 3 for the case K* = N 0=76, and in figure 4 for the case
K* = ~. D the latter two figures the familisr B1.asiuscrve for
the incompressible laminar boundary-layer flow is shown for proposes
of comparison. The constant C that is used in figure 4 is
determined by matching the viscosity coefficient at the temperature
Td* = TO* according to equation (Y).

The particular curves shown in figure 4 apply for T. = ~“ R.
Curves for any other temperature level T. differ only in the
constant factor C. t

.
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CONCLUDINGImMARKs

A comparison is shown in figure 5 which illustrates the good
agreement between velocity distributions calculated for the two
approximateions, W* = No ●76, and W* = ~. For general use the
linesr approximation is recommended since it gives results which
are practically as accurate as the former, yet does not require a
laborious iteration solution to be worked out for each Mach number.

In general,the’-hMmr+mkimg layer is seversl times thicker
than the laminar boundsry layer, as is illustrated in figmes 3 and
&where, for purposes of comparison, ths Blasius profile is also
shown. The rate of growth of mix~-lsyer thickness with increasing
Mach nunber is somewhat larger than the correspondingrate of growth
for a laminar boundary layer. The curves h figure 3 indicate a
value of roughly

%

G= 1 + 0.11Mm2

for rate of growth of the mixing layer; whereas the corresponding
value for a laminar boundary layer (see reterence 9, for example) is
approximately

8M
~= 1 +0.09Mm2

This difference is to be expected since a larger percentage of low
density air exists in a mixing layer than h a%oundary layer. ●

The foregoing statements,which indicate an ticrease 5nmixing–
layer thickness with increasing Mach nmiber, are based on the assump-
tion that the Reynolds number (U#/V.) is held constant while the
Mach nuniberis vsried. In most experimental.apparatus the Reynolds
nwiber changes considerablywith a variation in Mach number.
Consequently, depending up”onthe particular experimental method
employed, the observed rate of mixing h the x direction may be
either tncreased or decreased if

Ames Aeronautical Laboratory,
National Advisory Committee

Moffett Field, Calif.

the Mach nuniberis increased.

for Aeronautics,
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Figure 3. –Velocity distribution W 0.76-power wtiotion of
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Figure 5. -Comparison of veloclty ptvfile for a linear and

a O.76-power wriation of viscosity with temperature.
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